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Abstract

We give a systematic expansion of the crypticity—a recently introduced
measure of the inaccessibility of a stationary process’s internal state
information. This leads to a hierarchy of k-cryptic processes and allows us
to identify finite-state processes that have infinite cryptic order—the internal
state information is present across arbitrarily long, observed sequences. The
crypticity expansion is exact in both the finite- and infinite-order cases. It turns
out that k-crypticity is complementary to the Markovian finite-order property
that describes state information in processes. One application of these results is
an efficient expansion of the excess entropy—the mutual information between a
process’s infinite past and infinite future—that is finite and exact for finite-order
cryptic processes.

PACS numbers: 02.50.−r, 89.70.+c, 05.45.Tp, 02.50.Ey

1. Introduction

The data of phenomena come to us through observation. A large fraction of the theoretical
activity of model building, though, focuses on internal mechanism. How are observation and
modeling related? A first step is to frame the problem in terms of hidden processes—internal
mechanisms probed via instruments that, in particular, need not accurately report a process’s
internal state. A practical second step is to measure the difference between internal structure
and the information in observations.

We recently established that the amount of observed information a process communicates
from the past to the future—the excess entropy—is the mutual information between its forward-
and reverse-time minimal causal representations [1, 2]. This closed-form expression gives a
concrete connection between the observed information and a process’s internal structure.

Excess entropy and related mutual information quantities are widely used diagnostics
for complex systems. They have been applied to detect the presence of organization in
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dynamical systems [3–6], in spin systems [7–9], in neurobiological systems [10, 11] and even
in language [12, 13], to mention only a very few uses. Thus, understanding how much internal
state structure is reflected in the excess entropy is critical to whether or not these and other
studies of complex systems can draw structural inferences about the internal mechanisms that
produce observed behavior.

Unfortunately, there is a fundamental problem. The excess entropy is not the internal state
information the process stores—rather, the latter is the process’s statistical complexity [1, 2].
On the positive side, there is a diagnostic. The difference between, if you will, experiment and
theory (between observed information and internal structure) is controlled by the difference
between a process’s excess entropy and its statistical complexity. This difference is called the
crypticity—how much internal state information is inaccessible [1, 2]. Here we introduce a
classification of processes using a systematic expansion of crypticity.

The starting point is computational mechanics’s minimal causal representation of a
stochastic process P—the ε-machine [14, 15]. There, a process is viewed as a channel
that communicates information from the past,

←−
X = . . . X−3X−2X−1, to the future,

−→
X =

X0X1X2 . . . . (Xt takes values in a finite measurement alphabet A.) The excess entropy is the
shared (or mutual) information between the past and the future: E = I [

←−
X;−→

X]. The amount
of historical information that a process stores in the present is different. It is given by the
Shannon information Cμ = H [S] of the distribution over the ε-machine’s causal states S. Cμ

is called the statistical complexity and the causal states are sets of pasts
←−
x that are equivalent

for prediction [14]:

ε(
←−
x ) = {←−x ′ : Pr(

−→
X|←−x ) = Pr(

−→
X|←−x ′)}. (1)

Causal states have a Markovian property that they render the past and future statistically
independent; they shield the future from the past [15]:

Pr(
←−
X,

−→
X|S) = Pr(

←−
X|S)Pr(

−→
X|S). (2)

ε-machines are also unifilar [14, 16]: from the start state, each observed sequence
. . . x−3x−2x−1 . . . corresponds to one and only one sequence of causal states. The signature
of unifilarity is that on knowing the current state and measurement, the uncertainty in the next
state vanishes: H [St+1|St , Xt ] = 0.

Although they are not the same, the basic relationship between these quantities is clear:
E is the process’s channel utilization and Cμ is the sophistication of that channel. Their
difference, one of our main concerns in the following, indicates how a process stores,
manipulates and hides internal state information.

Until recently, E could not be as directly calculated from the ε-machine as the process’s
entropy rate hμ and its statistical complexity. [1, 2] solved this problem, giving a closed-form
expression for the excess entropy:

E = I [S+;S−], (3)

where S+ are the causal states of the process scanned in the ‘forward’ direction and S− are
the causal states of the process scanned in the ‘reverse’ time direction.

This result comes in a historical context. Some time ago, an explicit expression for the
excess entropy had been developed from the Hamiltonian for one-dimensional spin chains
with range-R interactions [8]:

E = Cμ − R hμ. (4)

2
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One-dimensional spin chains are special cases of order-R Markov processes. For this more
general class of processes, a similar, but slightly less compact form is known:

E = H
[
XR

0

] − R hμ, (5)

where XR
0 = X0, . . . , XR−1. It has also been known for some time that the statistical

complexity is an upper bound on the excess entropy [16]:

E � Cμ,

which follows from the equality derived there:

E = Cμ − H [S+|−→X].

Using forward and reverse ε-machines, [1] extended this, deriving the closed-form
expression for E in equation (3) and two new bounds on E: E � C−

μ and E � C+
μ. It

also showed that

H [S+|−→X] = H [S+|S−] (6)

and identified this quantity as controlling how a process hides its internal state information.
For this reason, it is called the process’s crypticity:

χ+ = H [S+|−→X]. (7)

In the context of forward and reverse ε-machines, one must distinguish two crypticities;
depending on the scan direction one has

χ+ = H [S+|S−] or χ− = H [S−|S+].

In the following we will not concern ourselves with reverse representations and so can simplify
the notation, using Cμ for C+

μ and χ for χ+.
Here we show that, for a restricted class of processes, the crypticity in equation (6)

can be systematically expanded to give an alternative closed form to the excess entropy in
equation (3). One ancillary benefit is a new and, we argue, natural hierarchy of processes in
terms of information accessibility.

2. k-crypticity

The process classifications based on spin-block length and order-R Markov are useful. They
give some insight into the nature of the kinds of process we can encounter and, concretely,
they allow for closed-form expressions for the excess entropy (and other system properties).
In a similar vein, we wish to carve the space of processes with a new blade. We define the
class of k-cryptic processes and develop their properties and closed-form expressions for their
excess entropies.

For convenience, we need to introduce several shorthands. First, to denote a symbol
sequence that begins at time t and is L symbols long, we write XL

t . Note that XL
t includes

Xt+L−1, but not Xt+L. Second, to denote a symbol sequence that begins at time t and continues
on to infinity, we write

−→
Xt . Analogously, the causal state at time t is denoted St , and a sequence

of states beginning at time t that is L states long is denoted SL
t .

Definition. The k-crypticity criterion is satisfied when

H [Sk|−→X0] = 0. (8)

Definition. A k-cryptic process is one for which the process’s ε-machine satisfies the
k-crypticity criterion.

3
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Definition. An ∞-cryptic process is one for which the process’s ε-machine does not satisfy
the k-crypticity criterion for any finite k.

Lemma 1. H [Sk|−→X0] is a nonincreasing function of k.

Proof. This follows directly from stationarity and the fact that conditioning on more random
variables cannot increase entropy:

H [Sk+1|−→X0] = H [Sk|−→X−1] � H [Sk|−→X0]. �

Lemma 2. If P is k-cryptic, then P is also j -cryptic for all j > k.

Proof. Being k-cryptic implies H [Sk|−→X0] = 0. Applying lemma 1, H [Sj |−→X0] �
H [Sk|−→X0] = 0. By positivity of entropy, we conclude that P is also j -cryptic. �

This provides us with a new way of partitioning the space of processes. We create
a parametrized class of sets {χk : k = 0, 1, 2, . . .}, where χk = {P : P is k-cryptic and
not (k − 1)-cryptic}.

The following result provides a connection to a very familiar class of processes.

Proposition 1. If a process P is order-k Markov, then it is k-cryptic.

Proof. If P is order-k Markov, then H
[
Sk

∣∣Xk
0

] = 0. Conditioning on more variables does
not increase uncertainty, so

H
[
Sk

∣∣Xk
0,

−→
Xk

] = 0.

But the left-hand side is H [Sk|−→X0]. Therefore, P is k-cryptic. �

Note that the converse of proposition 1 is not true. For example, the Even Process (EP),
the Random Noisy Copy Process (RnC) and the Random Insertion Process (RIP) (see [1, 2]),
are all 1-cryptic, but are not order-R Markov for any finite R.

Note also that proposition 1 does not preclude an order-k Markov process from being
j -cryptic, where j < k. Later we will show an example demonstrating this.

Given a process, in general one will not know its cryptic order. One way to investigate
this is to study the sequence of estimates of χ at different orders. To this end, we define the
k-cryptic approximation.

Definition. The k-cryptic approximation is defined as

χ(k) = H
[
S0

∣∣Xk
0,Sk

]
.

2.1. The k-cryptic expansion

We will now develop a systematic expansion of χ to order k in which χ(k) appears directly
and the k-crypticity criterion plays the role of an error term.

Theorem 1. The process crypticity is given by

χ = χ(k) + H [Sk|−→X0]. (9)

Proof. We calculate directly, starting from the definition, adding and subtracting the k-
crypticity criterion term from χ ’s definition, equation (7):

χ = H [S0|−→X0] − H [Sk|−→X0] + H [Sk|−→X0].

4
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We claim that the first two terms are χ(k). Expanding the conditionals in the purported χ(k)

terms and then canceling, we get joint distributions:

H [S0|−→X0] − H [Sk|−→X0] = H [S0,
−→
X0] − H [Sk,

−→
X0].

Now, splitting the future into two pieces and using this to write conditionals, the right-hand
side becomes

H
[−→
Xk

∣∣S0, X
k
0

]
+ H

[
S0, X

k
0

] − H
[−→
Xk

∣∣Sk, X
k
0

] − H
[
Sk, X

k
0

]
.

Appealing to the ε-machine’s unifilarity, we then have

H [
−→
Xk|Sk] + H

[
S0, X

k
0

] − H
[−→
Xk

∣∣Sk, X
k
0

] − H
[
Sk, X

k
0

]
.

Now, applying causal shielding gives

H [
−→
Xk|Sk] + H

[
S0, X

k
0

] − H [
−→
Xk|Sk] − H

[
Sk, X

k
0

]
.

Canceling terms, this simplifies to

H
[
S0, X

k
0

] − H
[
Sk, X

k
0

]
.

We now re-expand, using unifilarity to give

H
[
S0, X

k
0,Sk

] − H
[
Sk, X

k
0

]
.

Finally, we combine these, using the definition of conditional entropy, to simplify again:

H
[
S0

∣∣Xk
0,Sk

]
.

Note that this is our definition of χ(k).
This establishes our original claim:

χ = χ(k) + H [Sk|−→X0],

with the k-crypticity criterion playing the role of an approximation error. �

Corollary 1. A process P is k-cryptic if and only if

χ = χ(k).

Proof. Given the order-k expansion of χ just developed, we now assume that the k-crypticity
criterion is satisfied; namely, H [Sk|−→X0] = 0. Thus, we have from equation (9):

χ = χ(k).

Likewise, assuming χ = χ(k) requires, by equation (9) that H [Sk|−→X0] = 0 and thus the
process is k-cryptic. �

Corollary 2. For any process, χ(0) = 0.

Proof.

χ(0) = H
[
S0

∣∣X0
0,S0

]
= H [S0|S0]

= 0. �

5
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2.2. Convergence

Proposition 2. The approximation χ(k) is a nondecreasing function of k.

Proof. Lemma 1 showed that H [Sk|−→X0] is a nonincreasing function of k. By theorem 1,
χ(k) must be a nondecreasing function of k. �

Corollary 3. Once χ(k) reaches the value χ , χ(j) = χ for all j > k.

Proof. If there exists such a k, then by theorem 1 the process is k-cryptic. By lemma 2, the
process is j -cryptic for all j > k. Again, by theorem 1, χ(j) = χ . �

Corollary 4. If there is a k � 1 for which χ(k) = 0, then χ(1) = 0.

Proof. By positivity of the conditional entropy H [S0|X0,S1], χ(1) � 0. By the
nondecreasing property of χ(k) from proposition 2, χ(1) � χ(k) = 0. Therefore, χ(1) = 0.

�

Corollary 5. If χ(1) = 0, then χ(k) = 0 for all k.

Proof. Applying stationarity, χ(1) = H [S0|X0,S1] = H [Sk|Xk,Sk+1]. We are given
χ(1) = 0 and so H [Sk|Xk,Sk+1] = 0. We use this below. Expanding χ(k + 1),

χ(k + 1) = H
[
S0

∣∣Xk+1
0 ,Sk+1

]
= H

[
S0

∣∣Xk
0, Xk,Sk+1

]
= H

[
S0

∣∣Xk
0,Sk, Xk,Sk+1

]
� H

[
S0

∣∣Xk
0,Sk

]
= χ(k).

The third line follows from χ(1) = 0. By proposition 2, χ(k + 1) � χ(k). Therefore,
χ(k + 1) = χ(k). Finally, using χ(1) = 0, we have by induction that χ(k) = 0 for all k. �

Corollary 6. If there is a k � 1 for which χ(k) = 0, then χ(j) = 0 for all j � 1.

Proof. This follows by composing corollary 4 with corollary 5. �

Together, the proposition and its corollaries show that χ(k) is a nondecreasing function
of k which, if it reaches χ at a finite k, remains at that value for all larger k.

Proposition 3. The cryptic approximation χ(k) converges to χ as k → ∞.

Proof. Note that χ = limk→∞ H
[
S0

∣∣Xk
0

]
and recall that χ(k) = H

[
S0

∣∣Xk
0,Sk

]
. We show

that the difference approaches zero:

H
[
S0

∣∣Xk
0

] − H
[
S0

∣∣Xk
0,Sk

] = H
[
S0, X

k
0

] − H
[
Xk

0

] − H
[
S0, X

k
0,Sk

]
+ H

[
Xk

0,Sk

]
= H

[
S0, X

k
0

] − H
[
Xk

0

] − H
[
S0, X

k
0

]
+ H

[
Xk

0,Sk

]
= H

[
Xk

0,Sk

] − H
[
Xk

0

]
= H

[
Sk

∣∣Xk
0

]
.

Moreover, limk→∞ H
[
Sk

∣∣Xk
0

] = 0 by the ε map from pasts to causal states of equation (1).
Therefore, as k → ∞, χ(k) → χ . �

6
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2.3. Excess entropy for k-cryptic processes

Given a k-cryptic process, we can calculate its excess entropy in a form that involves a sum
of ∝ |Ak| terms, where each term involves products of k matrices. Specifically, we have the
following.

Corollary 7. A process P is k-cryptic if and only if E = Cμ − χ(k).

Proof. From [1], we have E = Cμ − χ , and by corollary 1, χ = χ(k). Together, these
complete the proof. �

The following proposition is a simple and useful consequence of the class of k-cryptic
processes.

Corollary 8. A process P is 0-cryptic if and only if E = Cμ.

Proof. If P is 0-cryptic, then E = Cμ − χ(0) and corollary 2 says that χ(0) = 0. To
establish the opposite direction, note that E = Cμ implies χ = 0. Applying corollary 2 shows
χ = χ(0), and so the process is 0-cryptic by corollary 1. �

2.4. Crypticity of spin chains

Now, we provide results on the crypticity of one-dimensional spin chains to complement prior
results on Markovity and excess entropy. First recall equation (5), which gives the excess
entropy for order-R Markov processes:

E = H
[
XR

0

] − Rhμ.

By proposition 1, such processes are also R-cryptic and so

E = Cμ − χ(R).

One-dimensional spin chains are precisely those order-R Markov processes for which the
statistical complexity, Cμ ≡ H [SR], equals the entropy over R-blocks, H

[
XR

0

]
. Reference [8]

stated a condition under which equality held in terms of transfer matrices. Here, we state a
simpler condition by equating two chain-rule expansions of H

[
XR

0 ,SR

]
:

H
[
XR

0

∣∣SR

]
+ H [SR] = H

[
SR

∣∣XR
0

]
+ H

[
XR

0

]
.

Since the process is Markov, H
[
SR

∣∣XR
0

] = 0 and thus

H
[
XR

0

] = H [SR] ⇐⇒ H
[
XR

0

∣∣SR

] = 0.

In words, spin chains are processes for which there exists a one-to-one correspondence between
the R-blocks and the causal states, confirming the interpretation specified in [8].

The above equations also show that spin chains have χ(R) = Rhμ. Here we provide
another proof:

Proposition 4.

H
[
XR

0

∣∣SR

] = 0 ⇐⇒ χ(R) = Rhμ, (10)

where hμ is the process’s entropy rate.

7
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Proof. The proof is a direct calculation:

χ(R) = H
[
S0

∣∣XR
0 ,SR

]
= H

[
S0, X

R
0

] − H
[
XR

0 ,SR

]
= H

[
S0, X

R
0

] − H
[
XR

0

∣∣SR

] − H [SR]

= H
[
S0, X

R
0

] − H
[
XR

0

∣∣SR

] − H [S0]

= H
[
XR

0

∣∣S0
] − H

[
XR

0

∣∣SR

]
= Rhμ − H

[
XR

0

∣∣SR

]
. �

Proposition 5. Periodic processes are 0-cryptic.

Proof. Periodic processes are order-R Markov spin chains, so E = Cμ −Rhμ. Since hμ = 0,
E = Cμ. By corollary 8 the process is 0-cryptic. �

Proposition 6. An order-R spin chain with positive entropy rate is not (R − 1)-cryptic.

Proof. Assume that the order-R Markov spin chain is (R − 1)-cryptic.
For R � 1, if the process is (R−1)-cryptic, then by corollary 1 χ(R−1) = χ . Combining

this with the above proposition 4, we have χ(R−1) = (R−1)hμ −H
[
XR−1

0

∣∣SR−1
]
. If it is an

order-R Markov spin chain, then we also have from equation (4) that χ = Rhμ. Combining this
with the previous equation, we find that H

[
XR−1

0

∣∣SR−1
] = −hμ. By positivity of conditional

entropies, we have reached a contradiction. Therefore an order-R Markov spin chain must not
be (R − 1)-cryptic.

For R = 0, the proof also holds since negative cryptic orders are not defined. �

Proposition 7. An order-R spin chain with positive entropy rate is not k-cryptic for any
0 � k < R.

Proof. By lemma 2, if the process where k-cryptic for some 0 � k < R, then it would
also be (R − 1)-cryptic. By proposition 6, this is not true. Therefore, the primitive orders of
Markovity and crypticity are the same. �

3. Examples

It is helpful to see crypticity in action. We now turn to a number of examples to illustrate
how various orders of crypticity manifest themselves in ε-machine structure and what kinds
of processes are cryptic and so hide internal state information from an observer. For details
(transition matrices, notation, and the like) not included in the following and for complementary
discussions and analyses of them, see [1, 2, 17].

We start at the bottom of the crypticity hierarchy with a 0-cryptic process and then show
examples of 1-cryptic and 2-cryptic processes. Continuing up the hierarchy, we generalize
and give a parametrized family of processes that are k-cryptic. Finally, we demonstrate an
example that is ∞-cryptic.

It should be pointed out, though, that these examples were hand chosen to illustrate some
of the range of possible processes in terms of cryptic and Markov orders. If one were to
encounter a process in the wild, its cryptic order would not be known and the calculation
of crypticity would require that one determines the cryptic order. One can estimate the
cryptic order by calculating the cryptic approximation until it appears to have converged or
computational power has run out. Alternatively, one might deduce the order exactly via some

8
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A Bp|0

1 − p|1

1|1

Figure 1. A 0-cryptic process: Even Process. The transitions denote the probability p of generating
symbol x as p|x.

A Bp|1

1 − p|0

1|1

Figure 2. A 1-cryptic process: Golden Mean Process.

other technique, as we do in the upcoming examples. Of course, we wish to note that [1]
demonstrates how to calculate χ without any knowledge of the cryptic order.

3.1. Even Process: 0-cryptic

Figure 1 gives the ε-machine for the Even Process. The Even Process produces binary
sequences in which all blocks of uninterrupted 1s are even in length, bounded by 0s. Further,
after each even length is reached, there is a probability p of breaking the block of 1s by
inserting one or more 0s.

Reference [2] showed that the Even Process is 0-cryptic with a statistical complexity of
Cμ = H (1/(2 − p)), an entropy rate of hμ = H(p)/(2 − p) and a crypticity of χ = 0. Note
that H(p) is the binary entropy function. If p = 1

2 , then E = Cμ = log2(3) − 2
3 bits. (As [2]

notes, these closed-form expressions for Cμ and E have been known for some time.)
To see why the Even Process is 0-cryptic, first note that the semi-infinite string−→

X0 = 1, 1, 1 . . . occurs with probability 0. So with probability 1, a given future will have only
a finite number of 1s before a 0 is seen. Once the 0 is seen, it is straightforward to count the
number of 1s preceding it. If the number of 1s is even, then S0, the causal state that preceded
this future, is A. Otherwise, it is B. In either case, we know the causal state with certainty, and
so, H [S0|−→X0] = 0.

It is important to note that this process is not order-R Markov for any finite R [17].
Nonetheless, our new expression for E is valid. This shows the broadening of our ability to
calculate E even for low complexity processes that are, in effect, infinite-order Markov.

3.2. Golden Mean Process: 1-cryptic

Figure 2 shows the ε-machine for the Golden Mean Process [17]. The Golden Mean Process is
one in which no two 0s occur consecutively. After each 1, there is a probability p of generating
a 0. As the sequence length grows, the ratio of the number of allowed words of length L to the
number of allowed words at length L − 1 approaches the golden ratio; hence, its name. The
Golden Mean Process ε-machine looks remarkably similar to that for the Even Process. The
informational analysis, however, shows that they have markedly different properties.

Reference [2] showed that the Golden Mean Process has the same statistical complexity
and entropy rate as the Even Process: Cμ = H (1/(2 − p)) and hμ = H(p)/(2 − p).

9
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A

B

C

D

E

1
2 |2

1
2 |0

1
2 |1

1
2 |3

1
2 |0

1
2 |1

1
2 |4

1
2 |6

1
2 |5

1
2 |7

Figure 3. A 2-cryptic process: Butterfly Process over a 6-symbol alphabet.

However, the crypticity is not zero (for 0 < p < 1). From corollary 1 we calculate

χ = χ(1)

= H
[
S0

∣∣X1
0,S1

]
= H

[
S0

∣∣X1
0

]
= Pr(0)H [S0|X0 = 0] + Pr(1)H [S0|X0 = 1]

= H(p)/(2 − p).

If p = 1
2 , Cμ = log2(3) − 2

3 bits, excess entropy E = log2(3) − 4
3 bits, and crypticity χ = 2

3
bits. Thus, the excess entropy differs from that of the Even Process. (As with the Even
Process, these closed-form expressions for Cμ and E have been known for some time.)

The Golden Mean Process is 1-cryptic. To see why, it is enough to note that it is order-1
Markov. By proposition 1, it is 1-cryptic. We know it is not 0-cryptic since any future
beginning with 1 could have originated in either state A or B. In addition, the spin-block
expression for excess entropy of [17], equation (4) here, applies for an R = 1 Markov chain.

3.3. Butterfly Process: 2-cryptic

The next example, the Butterfly Process of figure 3, illustrates, in a more explicit way than
possible with the previous processes, the role that crypticity plays and how it can be understood
in terms of an ε-machine’s structure. Most of the explanation does not require calculating
much, if anything.

It is first instructive to see why the Butterfly Process is not 1-cryptic.
If we can find a family {−→x0} such that H [S1|−→X0 = −→

x0] 
= 0, then the total conditional
entropy will be positive and, thus, the machine will not be 1-cryptic. To show that this can
happen, consider the future −→

x0 = (0, 1, 2, 4, 4, 4, . . .). It is clear that the state following 1
must be A. Thus, in order to generate 0 or 1 before arriving at A, the state pair (S0,S1) can
be either (B,C) or (D,E). This uncertainty in S1 is enough to break the criterion, and this
occurs for the family of futures beginning with 01.

To see that the process is 2-cryptic, note that the two paths (B,C) and (D,E) converge on
A. Therefore, there is no uncertainty in S2 given this future. It is reasonably straightforward
to see that indeed any two-symbol word (X0, X1) will lead to a unique causal state. This

10
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is because the Butterfly Process is a very limited version of an 8-symbol, order-2 Markov
process.

Note that the transition matrix is doubly stochastic and so the stationary distribution is
uniform. The statistical complexity is rather direct in this case: Cμ = log2 5. We now can
calculate χ using corollary 1:

χ = χ(2)

= H
[
S0

∣∣X2
0,S2

]
= H

[
S0

∣∣X2
0

]
= Pr(01) · H

[
S0

∣∣X2
0 = 01

]
+ Pr(12) · H

[
S0

∣∣X2
0 = 12

]
+ Pr(13) · H

[
S0

∣∣X2
0 = 13

]
= 1

10 · 1 + 1
10 · 1 + 1

10 · 1

= 3
10 bits.

From corollary 7, we get an excess entropy of

E = Cμ − χ(2)

= log2 5 − 3
10

≈ 2.0219 bits.

For comparison, if we had assumed the Butterfly Process was 1-cryptic, then we would have

E = Cμ − χ(1)

= Cμ − (H [S0, X0] − H [S1, X0])

≈ log 2(5) − (3.3219 − 2.5062)

= log 2(5) − 0.8156 ≈ 1.5063 bits.

We can see that this is substantially below the true value: a 25% error.

3.4. Restricted Golden Mean: k-cryptic

Now, we turn to illustrate a crypticity-parametrized family of processes, giving examples of
k-cryptic processes for any k. We call this family the Restricted Golden Mean as its support
is a restriction of the Golden Mean support. (See figure 4 for its ε-machines.) The k = 1
member of the family is exactly the Golden Mean.

It is straightforward to see that this process is order-k Markov since each word of length
k induces just one causal state. Proposition 1 then implies it is (at most) k-cryptic. In order
to show that it is not (k − 1)-cryptic, consider the case −→

x0 = 1k0∞. The first (k − 1) 1s
will induce a mixture over states k and 0. The following future −→

xk = 10∞ is consistent with
both states k and 0. Therefore, the (k − 1)-crypticity criterion is not satisfied. Therefore, it is
k-cryptic.

For arbitrary k, there are k + 1 causal states and the stationary distribution is

π =
(

2

k + 2
,

1

k + 2
,

1

k + 2
, . . . ,

1

k + 2

)
.

The statistical complexity is

Cμ = log2(k + 2) − 2

k + 2
.

11
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0

1

· · ·

k

1
2 |1

1
2 |0

1|11|1

1|1

Figure 4. k-cryptic processes: Restricted Golden Mean Family.

0

1

· · ·

k

1
2 |1

1
2 |0

1|01|0

1|1

Figure 5. k-cryptic processes: Stretched Golden Mean Family.

For the kth member of the family, we have for the crypticity:

χ = χ(k) = 2k

k + 2
.

And the excess entropy follows directly from corollary 7:

E = Cμ − χ = log2(k + 2) − 2(k + 1)

k + 2
,

which diverges with k. (Calculational details are found in [18].)

3.5. Stretched Golden Mean

The Stretched Golden Mean is a family of processes that does not occupy the same support as
the Golden Mean. Instead of requiring that blocks of 0s should be of length 1, we require that
they should be of length k. The ε-machine for this process is shown in figure 5.

12
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Again, it is straightforward to see that this process is order-k Markov. To see that it is not
0-cryptic, note that

H [S0|−→X0] = H [S0|X0 = 0,
−→
X1] + H [S0|X0 = 1,

−→
X1]

� H [S0|X0 = 1,
−→
X1]

= 2

k + 2

∑
−→x1

H [S0|X0 = 1,
−→
X1 = −→

x1]

� 2

k + 2
H [S0|−→X1 = 1∞]

= 2

k + 2
> 0.

To see that this family is 1-cryptic, first note that if X0 = 1, then S1 = 0. Next, consider
the case when X0 = 0. If the future −→

x1 = 1∞, then S1 = k. Similarly, if the future−→
x1 = 0n1∞, then S1 = k − n.

This family provides an example for which the cryptic order is strictly less than the
Markov order. In this case, the cryptic order is fixed at 1 for all k, while the Markov order is
k. Note that the separation between the Markov and cryptic order can grow arbitrarily large
and, thus, the two properties are clearly not redundant.

The stationary distribution is the same as for the Restricted Golden Mean and so, then, is
the statistical complexity. In addition, we have

χ = χ(1)

= H [S0|X0,S1]

= hμ.

Consequently,

E = Cμ − χ = Cμ − hμ.

3.6. Nemo Process: ∞-cryptic

We close our cryptic process bestiary with a (very) finite-state process that has infinite cryptic
order: the three-state Nemo Process. Over no finite-length sequence will all of the internal
state information be present in the observations. The Nemo Process ε-machine is shown in
figure 6.

Its stationary state distribution is

A B C

Pr(S) ≡ π = 1

3 − 2p

(
1 1 − p 1 − p

)
,

from which one calculates the statistical complexity:

Cμ = log2(3 − 2p) − 2(1 − p)

3 − 2p
log2(1 − p).

The Nemo Process is not a finite-cryptic process. That is, there exists no finite k for
which H [Sk|−→X0] = 0. To show this, we must demonstrate that there exists a family of futures
such that for each future H [Sk|−→X0 = −→

x ] > 0. The family of futures we use begins with all
0s and then has a 1. Intuitively, the 1 is chosen because it is a synchronizing word for the
process—after observing a 1, the ε-machine is always in state A. Then, causal shielding will

13
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A

B C

p|1

1 − p|0

1|0

1 − q|0

q|1

Figure 6. The ∞-cryptic Nemo Process.

decouple the infinite future from the first few symbols, thereby allowing us to compute the
conditional entropies for the entire family of futures.

First, recall the shorthand:

Pr(Sk|−→X0) = lim
L→∞

Pr
(
Sk

∣∣XL
0

)
.

Without loss of generality, assume k < L. Then,

Pr
(
Sk

∣∣XL
0

) = Pr
(
Xk

0,Sk, X
L
k

)
Pr

(
XL

0

)

= Pr
(
XL

k

∣∣Xk
0,Sk

)
Pr

(
Xk

0,Sk

)
Pr

(
XL

0

)

= Pr
(
XL

k

∣∣Sk

)
Pr

(
Xk

0,Sk

)
Pr

(
XL

0

) ,

where the last step is possible since the causal states are Markovian [15], shielding the past
from the future. Each of these quantities is given by

Pr
(
XL

k = w
∣∣Sk = σ

) = [T (w)1]σ

Pr
(
Xk

0 = w,Sk = σ
) = [πT (w)]σ

Pr
(
XL

0 = w
) = πT (w)1,

where T (w) ≡ T (x0)T (x1) · · · T (xL−1), 1 is a column vector of 1s, and T
(x)
σσ ′ = Pr(S ′ = σ ′, X =

x|S = σ). To establish H [Sk|−→X0] > 0 for any k, we rely on using values of k that are multiples
of 3. So, we concentrate on the following for n = 0, 1, 2, . . .:

H
[
S3n

∣∣X3n+1
0 = 03n1,

−→
X3n+1

]
> 0.

Since 1 is a synchronizing word, we can greatly simplify the conditional probability
distribution. First, we freely include the synchronized causal state A and rewrite the conditional
distribution as a fraction:

Pr
(
S3n

∣∣X3n+1
0 = 03n1,

−→
X3n+1

)
= Pr

(
S3n

∣∣X3n+1
0 = 03n1,S3n+1 = A,

−→
X3n+1

)

= Pr
(
S3n,X

3n+1
0 = 03n1,S3n+1 = A,

−→
X3n+1

)
Pr

(
X3n+1

0 = 03n1,S3n+1 = A,
−→
X3n+1

) .

14
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Then, we factor everything except
−→
X3n+1 out of the numerator and make use of causal shielding

to simplify the conditional. For example, the numerator becomes

Pr
(
S3n,X

3n+1
0 = 03n1,S3n+1 = A,

−→
X3n+1

)
= Pr

(−→
X3n+1

∣∣S3n,X
3n+1
0 = 03n1,S3n+1 = A

)
× Pr

(
S3n,X

3n+1
0 = 03n1,S3n+1 = A

)
= Pr(

−→
X3n+1|S3n+1 = A)

× Pr
(
S3n,X

3n+1
0 = 03n1,S3n+1 = A

)
= Pr(

−→
X3n+1|S3n+1 = A)Pr

(
S3n,X

3n+1
0 = 03n1

)
.

Similarly, the denominator becomes

Pr
(
X3n+1

0 = 03n1,S3n+1 = A,
−→
X3n+1

)
= Pr(

−→
X3n+1|S3n+1 = A)Pr

(
X3n+1

0 = 03n1
)
.

Combining these results, we obtain a finite form for the entropy of S3n conditioned on a family
of infinite futures, first noting:

Pr
(
S3n

∣∣X3n+1
0 = 03n1,

−→
X3n+1

) = Pr
(
S3n

∣∣X3n+1
0 = 03n1

)
.

Thus, for all −→
x3n+1, we have

H
[
S3n

∣∣X3n+1
0 = 03n1,

−→
X3n+1 = −→

x3n+1
]

= H
[
S3n

∣∣X3n+1
0 = 03n1

]
.

Now, we are ready to compute the conditional entropy for the entire family. First, note that
T (0) raised to the third power is a diagonal matrix with each element equal to (1 − p)(1 − q).
Thus, for j = 1, 2, 3 . . . ,

[T (0)]3j
σσ = (1 − p)j (1 − q)j .

Using all of the above relations, we can easily calculate

A B C

Pr
(
S3n

∣∣X3n+1
0 = 03n1

) = 1

3 − 2p

(
p 0 q(1 − p)

)
.

Thus, for p, q ∈ (0, 1), we have

H [S3n|−→X0] � H
[
S3n

∣∣X3n+1
0 = 03n1,

−→
X3n+1

]
=

∑
−→x 3n+1

Pr
(
X3n+1

0 = 03n1,
−→
X3n+1 = −→

x3n+1
)

× H
[
S3n

∣∣X3n+1
0 = 03n1,

−→
X3n+1 = −→

x3n+1
]

= H
[
S3n

∣∣X3n+1
0 = 03n1

]
×

∑
−→x 3n+1

Pr
(
X3n+1

0 = 03n1,
−→
X3n+1 = −→

x3n+1
)

= H
[
S3n

∣∣X3n+1
0 = 03n1

]
Pr

(
X3n+1

0 = 03n1
)

=
(

p

3 − 2p
log2

3 − 2p

p
+

q(1 − p)

3 − 2p
log2

3 − 2p

q(1 − p)

)

× [(1 − p)(1 − q)]3n

> 0.
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So, any time k is a multiple of 3, H [Sk|−→X0] > 0. Finally, suppose (k mod 3) = i, where i 
= 0.
That is, suppose k is not a multiple of 3. By lemma 1, H [Sk|−→X0] � H [Sk+i |−→X0] and, since
we just showed that the latter quantity is always strictly greater than zero, we conclude that
H [Sk|−→X0] > 0 for every value of k.

The above establishes that the Nemo Process does not satisfy the k-crypticity criterion for
any finite k. Thus, the Nemo Process is ∞-cryptic. This means that we cannot make use of
the k-cryptic approximation to calculate χ or E.

Fortunately, the techniques introduced in [1, 2] do not rely on an approximation method.
To avoid ambiguity, denote the statistical complexity we just computed as C+

μ. When those
techniques are applied to the Nemo Process, we find that the process is causally reversible(
C+

μ = C−
μ

)
and has the following forward-reverse causal-state conditional distribution:

A B C

Pr(S+|S−) = 1

p + q − pq

D

E

F

⎛
⎝p 0 q(1 − p)

0 q p(1 − q)

q p(1 − q) 0

⎞
⎠ .

With this, one can calculate E, in a closed form, via

E = C+
μ − H [S+|S−].

(Again, calculational details are provided in [18].)

4. Conclusion

Calculating the excess entropy I [
←−
X;−→

X] is, at first blush, a daunting task. We ask for a mutual
information between two infinite sets of random variables. Appealing to E = I [S;−→

X], we use
the compact representation of the ε-machine to reduce one infinite set (the past) to a (usually)
finite set. A process’s k-crypticity captures something similar about the infinite set of future
variables and allows us to further compact our form for excess entropy, reducing an infinite
variable set to a finite one. The resulting stratification of process space is a novel way of
thinking about its structure and, as long as we know in which stratum we lie, we can rapidly
calculate many quantities of interest.

Unfortunately, in the general case, one will not know a priori a process’s crypticity order.
Worse, as far as we are aware, there is no known finite method for calculating the cryptic
order. This strikes us as an interesting open problem and challenge.

If, by construction or by some other means, one does know it, then, as we showed,
crypticity and E can be calculated using the crypticity expansion. Failing this, though, one
might consider using the expansion to search for the order. There is no known stopping
criterion, so this search may not find k in finite time. Moreover, the expansion is a
calculation that grows exponentially in computational complexity with cryptic order, as we
noted. Devising a stopping criterion would be very useful to such a search.

Even without knowing the k-crypticity, the expansion is often still useful. For use in
estimating E, it provides us with a bound from above. This is complementary to the lower
bound one finds using the typical expansion E(L) = H

[
XL

0

] − hμL [17]. Using these upper
and lower bounds, one may determine that for a given purpose, the estimate of χ or E is within
an acceptable tolerance.

The crypticity hierarchy is a revealing way to carve the space of processes in that it
concerns how they hide internal state information from an observer. The examples were
chosen to illustrate several features of this new view. The Even Process, a canonical example
of order-∞ Markov, resides instead at the very bottom of this ladder. The two example families
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show us how k-cryptic is neither a parallel nor an independent concept to order-R Markov.
Finally, we see in the last example an apparently simple process with ∞-crypticity.

The general lesson is that internal state information need not be immediately available
in measurement values, but instead may be spread over long measurement sequences. If a
process is k-cryptic and k is finite, then internal state information is accessible over sequences of
length k. The existence, as we demonstrated, of processes that are ∞-cryptic is rather sobering.
Interpreted as a statement of the impossibility of extracting state information, it reminds us of
earlier work on hidden spatial dynamical systems that exhibit a similar encrypting of internal
structure in observed spacetime patterns [19].

Due to the exponentially growing computational effort to search for the cryptic order
and, concretely, the existence of ∞-cryptic processes, the general theory introduced in
[1, 2] is seen to be necessary. It allows one to directly calculate E and crypticity and to
do so efficiently.
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